US ERA ARCHIVE DOCUMENT

Sustainable Sorbents and Monitoring Technologies for Small Systems

Paul Westerhoff, Kiril Hristovski,
James Gifford, Heather Stancl, Allie Bowen,
Aaron Dotson

Project Goal: Develop innovative treatment and monitoring technologies for small drinking water systems to remove common groundwater contaminants in extreme environments.

The Challenge

- Small groundwater systems are increasingly having to deal with removing multiple inorganic and/or organic contaminants (As, Cr(VI), NO₃-, DBP precursors).
- We are exploring nano-enabled sorption processes to achieve simultaneous removal of pollutants.
- Many small groundwater systems are in remote areas and want local, sustainable solutions. We are exploring use of biochar based treatment technologies.
- Monitoring long-term pollutant exposure and near real-time operational data is a challenge for small systems, and we are exploring potential solution strategies.
- Working with small systems, and native American communities bring about new and unexpected social experiences.

Concept for Inorganics

StrongBase?

IonExchange?

NitrateRemoval?

NANO-SORBENTS

Simultaneous

Removal

Metal® Dxide Parsenic® Removal Parsenic® Removal

Weak Base Chromium Removal Chromium Remo

Approach: Batch experiments transitioning to column tests

A commercially available nanoenabled sorbent (NanoHIX) showed a higher capacity to sorb 2µM Cr and As simultaneously in pH 8 CW in equilibrium testing than other commercially available metal oxide (MO) or weak base anion exchange (WBAX) resins.

Methodology

Overview of Media Synthesis

Ion-Exchange Media

Results – Strong Base IX with TiO₂

Arsenic Removal

Results – Strong Base IX with TiO₂

Nitrate Removal

Anion Exchange

Strong Base

- Quaternary Amine
- Chloride Form
- Has been used in prior HIX applications

Weak Base

- Tertiary Amine
- Free Base (Hydroxide)
 Form CH₃

Resins Tested

SIR100 SIR700 LayneRT **S106 PWA7** Raw Raw+ nFe Raw+ nFe + Acid

Pollutant Removal in NSF53 Challenge Water

100ppb Cr, 144ppb As, 2000ppb NO3-N

Separation Factors

	α _{Cr/As}	α _{As/NO3}	α _{NO3/Cr}
PWA7	13.4	1.6	0.1
PWA7+nFe	0.4	34.3	0.1
PWA7+nFe +acid	1.1	12.2	0.1

Can BioChar replace Alum Coagulants or GAC in rural Alaska?

- BioChar is a recalcitrant carbonized form of organic matter (including trees, grasses, Ag wastes)
- Carbonized under thermal conditions less intense than activated carbon
- Does it work in drinking waters to remove DBP precursors, and/or inorganics if hybridized?

Biochar packed columns leach some UV254 organics

BioChar synthesis effects UV254 & TOC leaching and net TOC removal

Highlights & Path Forward

- First synthesis of HIX using weak base IX material
- Impregnating IX resins with Iron & Titanium oxides
- Impregnating spherical IX resins & new nanostructured resins
- HIX that can simultaneously remove 3 important oxo-anions (NO₃-, As, Cr(VI))
- Biochar carbonization influences DOC sorption.
 Will evaluate creation from different states of life (living, fire kill, beetle kill). Will impregnate with Fe & Ti oxides.
- Developed a framework for on-line monitoring using inexpensive UV-VIS spectral monitoring (S::can)

